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Graphing Complex Numbers & Polar Form of Complex Numbers p
De Moivre’s Theorem B> nth Roots of Complex Numbers

In this section we represent complex numbers in polar (or trigonometric) form. This en-
ables us to find the nth roots of complex numbers. To describe the polar form of complex
numbers, we must first learn to work with complex numbers graphically.

¥ Graphing Complex Numbers

To graph real numbers or sets of real numbers, we have been using the number line, which
has just one dimension. Complex numbers, however, have two components: a real part
and an imaginary part. This suggests that we need two axes to graph complex numbers:
one for the real part and one for the imaginary part. We call these the real axis and the
imaginary axis, respectively. The plane determined by these two axes is called the com-
plex plane. To graph the complex number a + bi, we plot the ordered pair of numbers
(a, b) in this plane, as indicated in Figure 1.

EXAMPLE 1 | Graphing Complex Numbers

Graph the complex numbers z, = 2 + 3,2, = 3 — 2i, and z, + z,.

SOLUTION Wehavez, + z, = (2 + 3i) + (3 — 2i) = 5 + i. The graph is shown in
Figure 2.

® NOW TRY EXERCISE 19 n

EXAMPLE 2 | Graphing Sets of Complex Numbers

Graph each set of complex numbers.
(@ S={a+ bila=0}
(b) T={a+bila<l1,b=0}

SOLUTION

(a) S is the set of complex numbers whose real part is nonnegative. The graph is shown
in Figure 3(a).

(b) Tis the set of complex numbers for which the real part is less than 1 and the imagi-
nary part is nonnegative. The graph is shown in Figure 3(b).
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Im Recall that the absolute value of a real number can be thought of as its distance from
) the origin on the real number line (see Section 1.1). We define absolute value for complex
bid a b numbers in a similar fashion. Using the Pythagorean Theorem, we can see from Figure 4

that the distance between a + bi and the origin in the complex plane is \/ 4> + p2 This
leads to the following definition.

|
|
|
|
|
|
0 | > MODULUS OF A COMPLEX NUMBER
a

The modulus (or absolute value) of the complex number z = a + bi is

FIGURE 4 2] = V@ + 52

EXAMPLE 3 | Calculating the Modulus
The plural of modulus is moduli. Find the moduli of the complex numbers 3 + 4/ and 8 — 5i.

SOLUTION
|13+ 4i|=VR+42=V25=5
|8 — 5i| = V8 + (—5)> = V89

& _NOW TRY EXERCISE 9 |

EXAMPLE 4 | Absolute Value of Complex Numbers
Graph each set of complex numbers.

(@ C={z]|z] = 1} () D= {z||z] =1}

SOLUTION

(a) Cis the set of complex numbers whose distance from the origin is 1. Thus, Cis a
circle of radius 1 with center at the origin, as shown in Figure 5.

(b) D is the set of complex numbers whose distance from the origin is less than or
equal to 1. Thus, D is the disk that consists of all complex numbers on and inside
the circle C of part (a), as shown in Figure 6.
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: V Polar Form of Complex Numbers
0 a R=e Let z = a + bi be a complex number, and in the complex plane let’s draw the line seg-

ment joining the origin to the point a + bi (see Figure 7). The length of this line seg-
FIGURE 7 mentisr = |z| = \Va® + b% If 0 is an angle in standard position whose terminal side
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coincides with this line segment, then by the definitions of sine and cosine (see Sec-
tion 6.2)

a = rcosf and b = rsin@

s0z = rcos B + irsin @ = r(cos 6 + i sin 6). We have shown the following.

POLAR FORM OF COMPLEX NUMBERS
A complex number z = a + bi has the polar form (or trigonometric form)
z = r(cos @ + isin @)

where 7 = |z| = Va® + b? and tan 6 = b/a. The number r is the modulus of
z, and @ is an argument of z.

The argument of z is not unique, but any two arguments of z differ by a multiple of 2.
When determining the argument, we must consider the quadrant in which z lies, as we see
in the next example.

EXAMPLE 5 | Writing Complex Numbers in Polar Form

Write each complex number in polar form.

(@ 1+i (b) -1+ V3i (¢) —4V3 — 4i (d) 3 +4i
SOLUTION These complex numbers are graphed in Figure 8, which helps us find their
arguments.
Iml} B ImA Im ImA 3+ 4
1432 L3i 4it '
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FIGURE 8
tanf =1 = 1 (a) Anargumentis @ = /4 and r = V1 + 1 = V2. Thus
0 =73
1+i= \/i(cos% + isin%)
pe V3 Vi (b) An argument is @ = 277/3 and r = V1 + 3 = 2. Thus
tan = == =Y
~1
2 2
p=2 —I+\/§i=2<cos?ﬂ+isin%>
— —4 I (¢) An argument is § = 777/6 (or we could use 6 = —577/6), and r = V48 + 16 = 8.
dan = B —
4V3 A\ Thus

—4V3 — 4i = 8<cos7—w + isinﬁ)
6 6
(d) Anargumentis @ = tan"'3and r = V32 + 42 =5. S0
3 + 4i = 5[cos(tan""3) + i sin(tan"' 3)]
.NOW TRY EXERCISES 29, 31, AND 33 |
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The Addition Formulas for Sine and Cosine that we discussed in Section 7.2 greatly
simplify the multiplication and division of complex numbers in polar form. The follow-
ing theorem shows how.

MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS

If the two complex numbers z, and z, have the polar forms

z; = ry(cos 0, + isin6,) and z, = 1y(cos 6, + isinb,)
then
712, = ryry[cos(6, + 6,) + isin(6, + 6,)] Multiplication
z T
Z—‘ = 7‘[eog(0l —6,) +isin(@, — 6,)] (z,#0)  Division
2 I

This theorem says:

To multiply two complex numbers, multiply the moduli and add the arguments.

To divide two complex numbers, divide the moduli and subtract the arguments.

PROOF To prove the Multiplication Formula, we simply multiply the two complex
numbers:

712, = ryr(cos 6, + isin 0,)(cos 0, + isin 6,)
= ryr,[cos 0, cos 0, — sin 6, sin 6, + i(sin 6, cos 6, + cos 6, sin 6,) |
= rr[cos(f, + 0,) + isin(f; + 0,)]

In the last step we used the Addition Formulas for Sine and Cosine.
The proof of the Division Formula is left as an exercise. &

EXAMPLE 6 | Multiplying and Dividing Complex Numbers
Let

2( T 4+ isin T d 5( 7T+"7T)
_ £ - = = Sin —
Z cos 1 [ sin 1 an Z cos 3 1 3
Find (a) z,z, and (b) z,/z,.

SOLUTION

(a) By the Multiplication Formula

<z)<5){cos<j * %) - fsi“(% ! Zﬂ

Tar L
10| cos — + isin —
12 12

I

Il

To approximate the answer, we use a calculator in radian mode and get
7,2, = 10(—0.2588 + 0.9659)
= —2.588 + 9.659i
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(b) By the Division Formula

o5 -3) vin(F-5))
=—-|cos| —— — | +ismn| — — —
3 4 3

(]

7 5 4
~Sleo(-55) (53
51U 12) TP T

2( T .. T )

=—| cos— —isin—

5 12 12

Using a calculator in radian mode, we get the approximate answer

2(0.9659 — 0.2588i) = 0.3864 — 0.1035i

gl N
=5

)
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V De Moivre’s Theorem

Repeated use of the Multiplication Formula gives the following useful formula for raising

a complex number to a power n for any positive integer 7.

DE MOIVRE’S THEOREM
If z = r(cos 6 + isin @), then for any integer n
z" = r"(cos nf + isin nf)

This theorem says: To take the nth power of a complex number, we take the nth power of

the modulus and multiply the argument by n.
By the Multiplication Formula

PROOF
zz = r*[cos(f + 6) + isin(6 + 6)]

gt =
= r%(cos 20 + isin 20)

Now we multiply z* by z to get
23 = 2% = r[cos(20 + 0) + isin(20 + 0)]
= r3(cos 36 + isin 30)

Repeating this argument, we see that for any positive integer n
z" = r"(cos nf + i sin nf)

A similar argument using the Division Formula shows that this also holds for negative
=

integers.

EXAMPLE 7 | Finding a Power Using De Moivre’s Theorem

Find (5 + 31)".
SOLUTION Sincei +1i=1

+

1 I, \/§< T w)
— == — — sin —
5 ot 5 cos4 isin-

(I + i), it follows from Example 5(a) that
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So by De Moivre’s Theorem
(1 1,)'0 V2N 10w . . 107r>
—+ =i =\ cos + isin
2.2 2 4 4

¥ Smo . Sm\ 1.
_ﬁ 0057+15m7 —3—21

“ _NOW TRY EXERCISE 69 El

¥ nth Roots of Complex Numbers

An nth root of a complex number z is any complex number w such that w” = z. De Moivre’s
Theorem gives us a method for calculating the nth roots of any complex number.

nth ROOTS OF COMPLEX NUMBERS

If z = r(cos @ + isin @) and n is a positive integer, then z has the n distinct nth

roots
/n 0 + 2km .. [0+ 2k
we = r¥f cos| —— — + isin &

fork=0,1,2,...,n— 1.

PROOF To find the nth roots of z, we need to find a complex number w such that

n

w" =z
Let’s write z in polar form:
z = r(cos @ + isin0)

One nth root of z is

0 0
w = rl/"<cos— + isin—>
n n

since by De Moivre’s Theorem, w" = z. But the argument 6 of z can be replaced by
0 + 2k for any integer k. Since this expression gives a different value of w for k = 0, 1,
2,...,n — 1, we have proved the formula in the theorem. =

The following observations help us use the preceding formula.

FINDING THE nth ROOTS OF z = r(COS 0 + i sin 0)
1. The modulus of each nth root is r'/".
2. The argument of the first root is 6/n.

3. We repeatedly add 277/n to get the argument of each successive root.

These observations show that, when graphed, the nth roots of z are spaced equally on
the circle of radius /"

EXAMPLE 8 | Finding Roots of a Complex Number

Find the six sixth roots of z = —64, and graph these roots in the complex plane.



We add 27/6 = 7/3 to each argument

to get the argument of the next root.
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FIGURE 9 The six sixth roots of
z=—64

We add 360°/3 = 120° to each
argument to get the argument of the
next root.
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FIGURE 10 The three cube roots of
z=2+2i
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SOLUTION In polar form, z = 64(cos 7 + i sin 7). Applying the formula for nth
roots with n = 6, we get

+ 2k + 2k
wy = 641/6[cos(%> + isin(%)}

fork =0, 1,2, 3,4, 5. Using 646 = 2, we find that the six sixth roots of —64 are

wy = 2<cos76r+ isinZ) =V3+i

T LT .
w, =2 Cosa+i5m5> = 2i

S5 . 5w
w, = 2| cos — + isin—
6

= =-V3+i

Naa”

7 7
wy = 2(cos%+ isin%) =-V3—i
11 11
(cos%-kisin%) =V3—i

All these points lie on a circle of radius 2, as shown in Figure 9.

® . NOW TRY EXERCISE 85 |

When finding roots of complex numbers, we sometimes write the argument 6 of the
complex number in degrees. In this case the nth roots are obtained from the formula

Un 0 + 360°k .. [ 6+ 360°%
w, = r'"| cos — + isin 5

fork=0,1,2,...,n— 1.

EXAMPLE 9 | Finding Cube Roots of a Complex Number
Find the three cube roots of z = 2 + 2/, and graph these roots in the complex plane.

SOLUTION First we write z in polar form using degrees. We have

r="\V2%+2%=2V2and 0 = 45°. Thus
z = 2V2(cos 45° + i sin 45°)

Applying the formula for nth roots (in degrees) with n = 3, we find that the cube roots of
z are of the form

45° + 360°k 45° + 360°k
wy, = (2\/@)1/{Cos<f> o+ isin(f>}
where k = 0, 1, 2. Thus the three cube roots are
wy = V2(cos 15° + isin 15°) = 1.366 + 0.366i  (2V2)"" = (277) 22 = /3
w, = V2(cos 135° + isin 135°) = —1 + i
w, = V2(cos 255° + i sin 255°) = —0.366 — 1.366i

The three cube roots of z are graphed in Figure 10. These roots are spaced equally on a
circle of radius V2.

® .NOW TRY EXERCISE 81 =
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EXAMPLE 10 | Solving an Equation Using the nth Roots Formula
Solve the equation z® + 64 = 0.

SOLUTION This equation can be written as z® = —64. Thus the solutions are the sixth
roots of —64, which we found in Example 8.

“ .NOW TRY EXERCISE 91

8.3 EXERCISES

CONCEPTS SKILLS
1. A complex number z = a + bi has two parts: a is the 5-14 m Graph the complex number and find its modulus.
part, and b is the part. To graph a + bi, 5. 4i 6. —3i
we graph the ordered pair (, ) in the complex plane. 7. _o 8 6
2. Letz =+ B 9. 5+2 10. 7 — 3i
(a) The modulus of zis r = and an argument of
’ 1. V3 +i 12, ~1~ V3,
z is an angle 0 satisfying tan § = : ! : 3 !
(b) We can express z in polar formasz=__ | 13. S 14. M
where 1 is the modulus of z and 6 is the argument of z. 5 2

3. Th 1 ber z = —1 + i in polar fi i
@) © complex number z £ 1 polar form 18 15-16 m Sketch the complex number z, and also sketch 2z, —z,
z= . The complex number and 3z on the same complex plane.
z:2(cos%+ isin%)inrectangularformis 15 z=1-+i 16. 2= —1+iV3
7= 17-18 m Sketch the complex number z and its complex conjugate
. z on the same complex plane.
(b) The complex number graphed below can be expressed in

rectangular form as

or in polar form as

17. z =8 + 2i 18. z= -5+ 6i

Im 19-20 m Sketch z,, z,, z, + z,, and z,z, on the same complex
it oz plane.
®19.2=2-i, n=2+i
20. z,=—1+1i, z,=2-3i
21-28 m Sketch the set in the complex plane.
0 | Re Y21 {z=a+ bila=0,b=0}

4. How many different nth roots does a nonzero complex number

. The number 16 has

have?

These roots are

fourth roots.

. In the complex plane these roots all lie on a circle

s , and

22. {z=a+bila>1,b> 1}
®.23. {z||z] =3}
® .25 {z]|z| <2}
27. {z=a+ bila+b<2}
28. {z=a + bila= b}

24. {z]|z] = 1}
26. {z|2=|z| =5}

of radius . Graph the roots on the following graph.
29-52 m Write the complex number in polar form with
Im A argument 0 between 0 and 2.

i <29, 1+ 30. 1+ V3i 31 V2 - V2i

32 1=i ®.33.2V3 -2 4. -1+

il

——————+—+——> 35. —3i 36. -3 —3V3i 37. 5 +5i

0l 4 Re

1 38. 4 39. 4V3 — 4i 40. 8i

I 41. —20 2. V3 +i 43. 3 + 4i
44. i(2 - 2i) 45. 3i(1 + i) 46. 2(1 — i)




47.
50.

53-60 ® Find the product z,z, and the quotient z,/z,. Express your

4(V3 + i)
3+ V3i

48. —3 — 3i
51. V2 + V2i

49, 2 +i
52. —mi

answer in polar form.

53.

54.

- 55.

56.
7.

58.

59.

60.

.. ™ R
zy = cosm + isin, zz=cos§+rsm§

3ar

T T 3 o
z,:cosz+rsm—, 22=cosT+zsmT

4

z 3(0 7-‘-Jr'sinw) 5( 47T+'i 477)
=3l cos—+isin— |, z,=5|cos— + isin—
: 6 6 : 3 3

97 . 97 T ... T
zy =T cos— +isin— |, z,=2|cos— + isin—
8 8 8 8

z; = 4(cos 120° + i sin 120°),
z, = 2(cos 30° + i sin 30°)

z, = V2(cos 75° + i sin 75°),
2z, = 3V2(cos 60° + i sin 60°)
z; = 4(cos 200° + i sin 200°),
z, = 25(cos 150° + i sin 150°)
z, = 3(cos 25° + i sin 25°),

2, = 3(cos 155° + i sin 155°)

61-68 m Write z, and z, in polar form, and then find the product
7,2, and the quotients 2,/z, and 1/z,.

61.
62.
63.
64.
65.
67.

2=V3+i z=1+V3i

2 =V2—-V2i, z,=1—i
20 =2V3—=2, z,=-1+i
71 =—-V2i, z,=-3-3V3i
5,=5+5i, z,=4 66. z, = 4\V/3 — 4i, z, =8i
71=-20, z=VV3+i 68.z,=3+4i, z,=2—2i

69-80 m Find the indicated power using De Moivre’s Theorem.

© .69
71

3.

75
71
79

1+ 70. (1 — V3i)®
(2V3 + 2i)° 72. (1 —i)®
(202)" e

(2 — 2i)® 76. (—% — ?i)15
(—1 =) 78. (3 + V3i)!
V3 + 2i)7° 80. (1 —4)°

81-90 ® Find the indicated roots, and graph the roots in the com-
plex plane.

< 81. The square roots of 4\/3 + 4i
82. The cube roots of 4V/3 + 4i

SECTION 8.3

83.
84.
-~ 85.
86.
87.
88.
89.
90.
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The fourth roots of —81/

The fifth roots of 32

The eighth roots of 1

The cube roots of 1 + i

The cube roots of i

The fifth roots of i

The fourth roots of —1

The fifth roots of —16 — 16V/3i

91-96 m Solve the equation.

S0,
93,
95.

97.

2 +1=0 9.2 —i=0
22— 4V3 —4i=0 94, :°-1=0
2+ 1=—i 9. 22— 1=0

2 L 2 . .
(a) Letw = cos — + i sin— where n is a positive
n n

n

integer. Show that 1, w, w? w?, ..., w" " are the n

distinct nth roots of 1.
(b) If z # 0 is any complex number and s" = z, show that
the n distinct nth roots of z are

s, sw, sw?, sw3, ..., sw" !

DISCOVERY=DISCUSSION=WRITING

98.

99.

100.

Q

In this project we use graphs of complex numbers to create
fractal images. You can find the project at the book companion
website: www.stewartmath.com

Sums of Roots of Unity Find the exact values of all
three cube roots of 1 (see Exercise 97) and then add them. Do
the same for the fourth, fifth, sixth, and eighth roots of 1.
What do you think is the sum of the nth roots of 1 for any n?

Products of Roots of Unity Find the product of the
three cube roots of 1 (see Exercise 97). Do the same for the
fourth, fifth, sixth, and eighth roots of 1. What do you think
is the product of the nth roots of 1 for any n?

Complex Coefficients and the Quadratic Formula
The quadratic formula works whether the coefficients of the
equation are real or complex. Solve these equations using the
quadratic formula and, if necessary, De Moivre’s Theorem.

(@ 22+ (1 +i)z+i=0
) z2—iz+1=0
©z22—2—-i)z—1%i=0

DISCOVERY

PROJECT Fractals
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8.4 PrLANE CURVES AND PARAMETRIC EQUATIONS

Plane Curves and Parametric Equations P> Eliminating the Parameter b
Finding Parametric Equations for a Curve B Using Graphing Devices to Graph
Parametric Curves

So far, we have described a curve by giving an equation (in rectangular or polar coordi-
nates) that the coordinates of all the points on the curve must satisfy. But not all curves in
the plane can be described in this way. In this section we study parametric equations,
which are a general method for describing any curve.

V Plane Curves and Parametric Equations

We can think of a curve as the path of a point moving in the plane; the x- and
y-coordinates of the point are then functions of time. This idea leads to the following
definition.

PLANE CURVES AND PARAMETRIC EQUATIONS

If f and g are functions defined on an interval /, then the set of points (f(¢), g(¢))
is a plane curve. The equations

x = f(t) y=9(1)

where t € 1, are parametric equations for the curve, with parameter .

EXAMPLE 1 | Sketching a Plane Curve
Sketch the curve defined by the parametric equations
x=1t*—3t y=t—1

SOLUTION For every value of 7, we get a point on the curve. For example, if 1 = 0,
then x = 0 and y = —1, so the corresponding point is (0, —1). In Figure 1 we plot the
points (x, y) determined by the values of 7 shown in the following table.

t i y
-2 10 -3
—1 4 -2
0 0 =1
1 =2, 0
2 =2 1
3 0 2
4 4 3
3 10 4

FIGURE 1

As t increases, a particle whose position is given by the parametric equations moves
along the curve in the direction of the arrows.

* .NOW TRY EXERCISE 3 =




