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5.5 EXERCISES
CONCEPTS \/2
) o ) 4. (a) sin~'(—1) (b) sin”' —= (¢) sin™!(=2)
1. (a) To define the inverse sine function, we restrict the domain 2
of sine to the interval . On this interval the » " . V3
sine function is one-to-one, and its inverse function sin™" < 5. (a) cos (1) (b) cos™ 3 (¢) cos <_T>
isdefinedbysin 'x =y < sin____ =__ For
' . -1 -1 -1 \/E
example, sin~!'} = becausesin___ = _ | 6. (a) cos ) (b) cos™ 1 (¢) cos ary
(b) To define the inverse cosine function we restrict the
~1 ~1\/ -1 \/g
domain of cosine to the interval . On this < 7. (a) tan”'(—1) (b) tan 3 (c) tan 3
interval the cosine function is one-to-one and its inverse
function cos ™" is defined by cos 'x = y < 8. (a) tan"' 0 (b) tan—l(_\/g) (¢) tan~' ( _?)
cos =___ . Forexample,cos '3 =__
V2
because cos = 9. (a) cos™'(—3) (b) Sin"(—7> (¢) tan~'1
2. The cancellation property sin™!(sin x) = x is valid for x in the
o— 10. (a) cos™' 0 (b) sin™' 0 () sin”'(—3)

ot e MY T
(a) sin (sm3) 3

10 10
(b) sin'1<sin TW) = ?77

. Which of the following is not true?

SKILLS

3-10 ® Find the exact value of each expression, if it is defined.

V3
. 3. (a) sin™'1 (b) sin™! =

(c) sin"'2

11-22 m Use a calculator to find an approximate value of each ex-
pression correct to five decimal places, if it is defined.

12. sin~!'(-9)

<11,

S 135
15.
<17.
19.
<21,

sin™' 3

(-
(

tan"! 10

tan~'(1.23456)
sin~'(—0.25713)

)

cos”~
cos”!(—0.92761)

14. cos™!
16. sin~!
18. tan™!

20. cos™!

22. tan”!

—0.25713)
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23-44 ® Find the exact value of the expression, if it is defined.
23,
25,

27.

- 33.
- 35.

37.
39.
41.

43.

5.6

sin(sin "' Jl')

tan(tan~' 5)
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29 cos"<cossl>
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a
<31, sin”!{ sin| ——
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1

sin(tan”'(—1))

24.
26.

)
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MoDELING HARMONIC

. osin

cos(cos’I %)

sin(sin™' 5

1

. cos(sin~' 0)

DISCOVERY=DISCUSSION = WRITING

45. Two Different Compositions Let fand g be the

functions
f(x) = sin(sin""x)
and g(x) = sin”(sin x)

By the cancellation properties, f(x) = x and g(x) = x for
suitable values of x. But these functions are not the same for
all x. Graph both f and g to show how the functions differ.
(Think carefully about the domain and range of sin ™).

46-47 m Graphing Inverse Trigonometric Functions
(a) Graph the function and make a conjecture, and (b) prove that
your conjecture is true.

46. y = sin 'x + cos' x

I
47. y =tan 'x + tan' —
X

2
. tan(sinf' 7)
2

. sin(tan~'(—V/3))

MoTtioN

| Simple Harmonic Motion B Damped Harmonic Motion

Periodic behavior—behavior that repeats over and over again—is common in nature.
Perhaps the most familiar example is the daily rising and setting of the sun, which re-
sults in the repetitive pattern of day, night, day, night, . . . . Another example is the
daily variation of tide levels at the beach, which results in the repetitive pattern of high
tide, low tide, high tide, low tide, . . . . Certain animal populations increase and de-
crease in a predictable periodic pattern: A large population exhausts the food supply,
which causes the population to dwindle; this in turn results in a more plentiful food
supply, which makes it possible for the population to increase; and the pattern then re-
peats over and over (see the Discovery Project Predatoir/Prey Models referenced on
page 398).

Other common examples of periodic behavior involve motion that is caused by vibra-
tion or oscillation. A mass suspended from a spring that has been compressed and then al-
lowed to vibrate vertically is a simple example. This “back and forth” motion also occurs
in such diverse phenomena as sound waves, light waves, alternating electrical current, and
pulsating stars, to name a few. In this section we consider the problem of modeling peri-
odic behavior.

V Simple Harmonic Motion

The trigonometric functions are ideally suited for modeling periodic behavior. A glance
at the graphs of the sine and cosine functions, for instance, tells us that these functions
themselves exhibit periodic behavior. Figure | shows the graph of y = sin 7. If we think of
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t as time, we see that as time goes on, y = sin ¢ increases and decreases over and over
again. Figure 2 shows that the motion of a vibrating mass on a spring is modeled very ac-
curately by y = sin 1.

y=sint

(time)

FIGURE 1 y=sins FIGURE 2 Motion of a vibrating spring is

The main difference between the two
equations describing simple harmonic
motion is the starting point. At = 0
we get

y=asinw-0=20

y=acosw-0=a

[n the first case the motion “starts™
with zero displacement, whereas in the
second case the motion “starts™ with
the displacement at maximum (at the
amplitude a).

The symbol w is the lowercase Greek

letter “omega,” and v is the letter “nu.”

{

Rest
position

FIGURE 3

modeled by y = sin t.

Notice that the mass returns to its original position over and over again. A cycle is one
complete vibration of an object, so the mass in Figure 2 completes one cycle of its mo-
tion between O and P. Our observations about how the sine and cosine functions model
periodic behavior are summarized in the following box.

SIMPLE HARMONIC MOTION
If the equation describing the displacement y of an object at time 7 is
y = asin wt or Yy = acos ot

then the object is in simple harmonic motion. In this case,

amplitude = | a | Maximum displacement of the object
: 2 - A :
period = — lime required to complete one cycle
w
w . e ims
frequency = T Number of cycles per unit of time
T

Notice that the functions
y = asin 2mvt and y = acos 2wt

have frequency », because 277v/(27r) = v. Since we can immediately read the frequency
from these equations, we often write equations of simple harmonic motion in this form.

EXAMPLE 1 | A Vibrating Spring
The displacement of a mass suspended by a spring is modeled by the function
y = 10 sin 477t

where y is measured in inches and ¢ in seconds (see Figure 3).
(a) Find the amplitude, period, and frequency of the motion of the mass.
(b) Sketch a graph of the displacement of the mass.
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VA , SOLUTION
y = 10 sin 4t . )
10+ (a) From the formulas for amplitude, period, and frequency we get
amplitude = |a| = 101in,
. 27 2 1
period = — = —= —5
f [0 47 2

=]

VBl 2
2 2 4
frequency = 2 _T_, cycles per second (Hz)
2 2
_10 = 5

(b) The graph of the displacement of the mass at time ¢ is shown in Figure 4.

FIGURE 4 .NOW TRY EXERCISE 3 ™

An important situation in which simple harmonic motion occurs is in the production of
sound. Sound is produced by a regular variation in air pressure from the normal pressure.
If the pressure varies in simple harmonic motion, then a pure sound is produced. The tone
of the sound depends on the frequency, and the loudness depends on the amplitude.

EXAMPLE 2 | Vibrations of a Musical Note

A tuba player plays the note E and sustains the sound for some time. For a pure E the vari-
3 ation in pressure from normal air pressure is given by

V(t) = 0.2 sin 807t

where V is measured in pounds per square inch and 7 is measured in seconds.
(a) Find the amplitude, period, and frequency of V.
(b) Sketch a graph of V.

(c) If the tuba player increases the loudness of the note, how does the equation for V
change?

(d) If the player is playing the note incorrectly and it is a little flat, how does the equa-
tion for V change?

YA SOLUTION
02 ¥ = Ok i 80w (a) From the formulas for amplitude, period, and frequency we get
amplitude = [0.2] = 0.2
g 2m 1
0 M PERO% = 80 ~ 40
2 (s)
807
f =—=40
—024 Tequency = -
(b) The graph of V is shown in Figure 5.
FIGURE 5 (c) If the player increases the loudness the amplitude increases. So the number 0.2 is

replaced by a larger number.

(d) If the note is flat, then the frequency is decreased. Thus, the coefficient of 7 is less
than 8077.

.NOW TRY EXERCISE 29 =

EXAMPLE 3 | Modeling a Vibrating Spring

A mass is suspended from a spring. The spring is compressed a distance of 4 cm and
then released. It is observed that the mass returns to the compressed position after § s.
(a) Find a function that models the displacement of the mass.

(b) Sketch the graph of the displacement of the mass.
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SOLUTION

(a) The motion of the mass is given by one of the equations for simple harmonic mo-
tion. The amplitude of the motion is 4 cm. Since this amplitude is reached at time
1 = 0, an appropriate function that models the displacement is of the form

y = acos wt

Since the period is p = 3, we can find w from the following equation:

. 2w
period = °

I 2w e
3 % eriod = 3
= 67 Solve for w

So the motion of the mass is modeled by the function
y = 4 cos 67t

where y is the displacement from the rest position at time 7. Notice that when
t = 0, the displacement is y = 4, as we expect.

(b) The graph of the displacement of the mass at time 7 is shown in Figure 6.

“ .NOW TRY EXERCISES 15 AND 35 =

In general, the sine or cosine functions representing harmonic motion may be shifted
horizontally or vertically. In this case, the equations take the form

y=asin(o(t —¢)) +b or y=uacos(w(t —c))+b

The vertical shift b indicates that the variation occurs around an average value b. The hor-
izontal shift ¢ indicates the position of the object at r = 0. (See Figure 7.)

YA y

b+a+t

y=asin(w(t — ¢)) + b y=acos(w(t —c)) + b

~Y

(@) (b)

EXAMPLE 4 \ Modeling the Brightness of a Variable Star

A variable star is one whose brightness alternately increases and decreases. For the vari-
able star Delta Cephei, the time between periods of maximum brightness is 5.4 days. The
average brightness (or magnitude) of the star is 4.0, and its brightness varies by +0.35
magnitude.

(a) Find a function that models the brightness of Delta Cephei as a function of time.
(b) Sketch a graph of the brightness of Delta Cephei as a function of time.
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y

FIGURE 8

FIGURE 9 Graph of the length of
daylight from March 21 through
December 21 at various latitudes

SOLUTION
(a) Let’s find a function in the form
y=acos(w(t —c)) + b

The amplitude is the maximum variation from average brightness, so the amplitude
is a = 0.35 magnitude. We are given that the period is 5.4 days, so

2
o= == 1164
5.4

Since the brightness varies from an average value of 4.0 magnitudes, the graph is
shifted upward by b = 4.0. If we take 1 = 0 to be a time when the star is at maxi-
mum brightness, there is no horizontal shift, so ¢ = 0 (because a cosine curve
achieves its maximum at r = 0). Thus, the function we want is

vy = 0.35 cos(1.167) + 4.0

where 7 is the number of days from a time when the star is at maximum brightness.

(b) The graph is sketched in Figure 8.
.NOW TRY EXERCISE 39 =

The number of hours of daylight varies throughout the course of a year. In the North-
ern Hemisphere, the longest day is June 21, and the shortest is December 21. The average
length of daylight is 12 h, and the variation from this average depends on the latitude. (For
example, Fairbanks, Alaska, experiences more than 20 h of daylight on the longest day and
less than 4 h on the shortest day!) The graph in Figure 9 shows the number of hours of
daylight at different times of the year for various latitudes. It’s apparent from the graph
that the variation in hours of daylight is simple harmonic.
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Source: Lucia C. Harrison, Daylight, Twilight, Darkness and Time
(New York: Silver, Burdett, 1935), page 40.

EXAMPLE 5 \ Modeling the Number of Hours of Daylight
In Philadelphia (40° N latitude) the longest day of the year has 14 h 50 min of daylight,
and the shortest day has 9 h 10 min of daylight.

(a) Find a function L that models the length of daylight as a function of 7, the number
of days from January 1.

(b) An astronomer needs at least 11 hours of darkness for a long exposure astronomical
photograph. On what days of the year are such long exposures possible?



(5 #=101 1=241
0 : : — 365
FIGURE 10

Why do we say that household current
is 110 V when the maximum voltage
produced is 155 V? From the symmetry
of the cosine function we see that the
average voltage produced is zero.This
average value would be the same for
all Ac generators and so gives no infor-
mation about the voltage generated.
To obtain a more informative measure
of voltage, engineers use the root-
mean-square (rms) method. It can be
shown that the rms voltage is 1/V/2
times the maximum voltage. So for
household current the rms voltage is

1
155 X — =~ 110V
V2
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SOLUTION

(a) We need to find a function in the form
vy =asin(o(t —¢)) + b
whose graph is the 40°N latitude curve in Figure 9. From the information given, we
see that the amplitude is
a=3(14% — 9¢) ~283h

Since there are 365 days in a year, the period is 365, so

w = 2 =~ 0.0172
365
Since the average length of daylight is 12 h, the graph is shifted upward by 12, so
b = 12. Since the curve attains the average value (12) on March 21, the 80th day of
the year, the curve is shifted 80 units to the right. Thus, ¢ = 80. So a function that
models the number of hours of daylight is

y = 2.83 5in(0.0172(t — 80)) + 12

where 7 is the number of days from January 1.

(b) A day has 24 h, so 11 h of night correspond to 13 h of daylight. So we need
to solve the inequality y = 13. To solve this inequality graphically, we graph
vy = 2.83sin 0.0172(t — 80) + 12 and y = 13 on the same graph. From the
graph in Figure 10 we see that there are fewer than 13 h of daylight between
day 1 (January 1) and day 101 (April 11) and from day 241 (August 29) to
day 365 (December 31).

.NOW TRY EXERCISE 41 =]

Another situation in which simple harmonic motion occurs is in alternating current
(AC) generators. Alternating current is produced when an armature rotates about its axis
in a magnetic field.

Figure 11 represents a simple version of such a generator. As the wire passes through
the magnetic field, a voltage E is generated in the wire. It can be shown that the voltage
generated is given by

E(t) = E,cos wf

where E, is the maximum voltage produced (which depends on the strength of the mag-
netic field) and w/(277) is the number of revolutions per second of the armature (the
frequency).

,— Magnets g

Wire

FIGURE 11

EXAMPLE 6 \ Modeling Alternating Current

Ordinary 110-V household alternating current varies from + 155V to — 155V with a fre-
quency of 60 Hz (cycles per second). Find an equation that describes this variation in
voltage.



418 C(HAPTER S | Trigonometric Functions: Unit Circle Approach

FIGURE 12

Hz is the abbreviation for hertz. One

hertz is one cycle per st

>cond.

SOLUTION The variation in voltage is simple harmonic. Since the frequency is 60 cy-
cles per second, we have

2 = 60 or w = 1207
2

Let’s take 1 = 0 to be a time when the voltage is +155 V. Then
E(t) = a cos wt = 155 cos 1207t
* .NOW TRY EXERCISE 43 i

V¥ Damped Harmonic Motion

The spring in Figure 2 on page 413 is assumed to oscillate in a frictionless environment. In
this hypothetical case the amplitude of the oscillation will not change. In the presence of
friction, however, the motion of the spring eventually “dies down”; that is, the amplitude of
the motion decreases with time. Motion of this type is called damped harmonic motion.

DAMPED HARMONIC MOTION

If the equation describing the displacement y of an object at time 7 is
y=ke “sinot or y=ke “coswt (c>0)

then the object is in damped harmonic motion. The constant ¢ is the damping
constant, k is the initial amplitude, and 27w is the period.*

Damped harmonic motion is simply harmonic motion for which the amplitude is gov-
erned by the function a(r) = ke™ . Figure 12 shows the difference between harmonic mo-
tion and damped harmonic motion.

YA b
14

(a) Harmonic motion: y = sin 8¢ (b) Damped harmonic motion:
y = e 'sin 8t

EXAMPLE 7 | Modeling Damped Harmonic Motion

Two mass-spring systems are experiencing damped harmonic motion, both at 0.5 cycles
per second and both with an initial maximum displacement of 10 cm. The first has a
damping constant of 0.5, and the second has a damping constant of 0.1.

(a) Find functions of the form g(r) = ke “cos wt to model the motion in each case.
(b) Graph the two functions you found in part (a). How do they differ?

SOLUTION

(a) Attime ¢t = 0 the displacement is 10 cm. Thus, g(0) = ke % cos(w-0) = k, so
k = 10. Also, the frequency is f = 0.5 Hz, and since w = 27 f (see page 413), we
get w = 27r(0.5) = . Using the given damping constants, we find that the mo-
tions of the two springs are given by the functions

gi(t) = 10e ™ cosmt  and  g,(t) = 10e "' cos mrt

*In the case of damped harmonic motion the term quasi-period is often used instead of period because the motion is
not actually periodic—it diminishes with time. However, we will continue to use the term period to avoid confusion.
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(b) The functions ¢, and g, are graphed in Figure 13. From the graphs we see that in
the first case (where the damping constant is larger) the motion dies down quickly,
whereas in the second case, perceptible motion continues much longer.

12 12

- i i /\/\/\/\ AWAWNRE

—12 —12
gi(t) = 10 ¢ cos 7t ¢o(t) =100V cos 7t

]

* .NOW TRY EXERCISE 19

As the preceding example indicates, the larger the damping constant ¢, the quicker the
oscillation dies down. When a guitar string is plucked and then allowed to vibrate freely, a
point on that string undergoes damped harmonic motion. We hear the damping of the mo-
tion as the sound produced by the vibration of the string fades. How fast the damping of
the string occurs (as measured by the size of the constant ¢) is a property of the size of the
string and the material it is made of. Another example of damped harmonic motion is the
motion that a shock absorber on a car undergoes when the car hits a bump in the road. In
this case the shock absorber is engineered to damp the motion as quickly as possible (large
¢) and to have the frequency as small as possible (small w). On the other hand, the sound
produced by a tuba player playing a note is undamped as long as the player can maintain
the loudness of the note. The electromagnetic waves that produce light move in simple har-
monic motion that is not damped.

EXAMPLE 8 | A Vibrating Violin String

The G-string on a violin is pulled a distance of 0.5 cm above its rest position, then re-
leased and allowed to vibrate. The damping constant ¢ for this string is determined to be
1.4. Suppose that the note produced is a pure G (frequency = 200 Hz). Find an equation
that describes the motion of the point at which the string was plucked.

SOLUTION Let P be the point at which the string was plucked. We will find a function
f(r) that gives the distance at time 7 of the point P from its original rest position. Since the
maximum displacement occurs at 1 = 0, we find an equation in the form

y = ke cos wt

From this equation we see that f(0) = k. But we know that the original displacement of
the string is 0.5 cm. Thus, k = 0.5. Since the frequency of the vibration is 200, we have
o = 27f = 27(200) = 4007 . Finally, since we know that the damping constant is 1.4,
we get

f(t) = 0.5¢ " cos 4007t
.NOW TRY EXERCISE 45

EXAMPLE 9 ] Ripples on a Pond

A stone is dropped in a calm lake, causing waves to form. The up-and-down motion of a
point on the surface of the water is modeled by damped harmonic motion. At some time
the amplitude of the wave is measured, and 20 s later it is found that the amplitude has
dropped to 5 of this value. Find the damping constant c.
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SOLUTION The amplitude is governed by the coefficient ke

ct

in the equations for

damped harmonic motion. Thus, the amplitude at time 7 is ke”, and 20 s later, it is
ke UF20) So, because the later value is ,'7) the earlier value, we have

k€~('(l+3()) ==

I —_
]—Ok(,) <

We now solve this equation for ¢. Canceling k and using the Laws of Exponents, we get

—ct, ,=20c _ 1 —ct
e 10¢
—20c¢
=200 — ILO Cancel ¢
20¢ T |
2% =10 lake reciprocals

Taking the natural logarithm of each side gives

Il

20c = In(10)
¢ = 55 In(10) = 3(2.30) = 0.12

Thus, the damping constant is ¢ = 0.12.

® _NOW TRY EXERCISE 47 E

5.6 EXERCISES

CONCEPTS

1. For an object in simple harmonic motion with amplitude a and
period 277/w, find an equation that models the displacement y
at time ¢ if

(a) y=0attimer=0:y =
(b) y=aattimer=0:y=

2. For an object in damped harmonic motion with initial ampli-
tude k, period 277/w, and damping constant ¢, find an equation
that models the displacement y at time ¢ if

(a) y=0attimer=0:y =
(b) ¥

aattimer =0y =

SKILLS

3-10 m The given function models the displacement of an object

moving in simple harmonic motion.

(a) Find the amplitude, period, and frequency of the motion.

(b) Sketch a graph of the displacement of the object over one
complete period.

T3, y = 2sin 3¢ 4, y=3 cos%r

5.y = —cos 0.3t 6. y = 2.4 sin 3.6t

7. y=-025 cos(l.Sr - %) 8. vy = —3sin(0.2r + 1.4)

9. y=5cos(3r+3) 10. y = 1.6sin(r — 1.8)

11-14 ® Find a function that models the simple harmonic motion
having the given properties. Assume that the displacement is zero
at time 1 = 0.

11. amplitude 10 cm, period 3 s

12. amplitude 24 ft, period 2 min
13. amplitude 6 in., frequency 5/7 Hz
14. amplitude 1.2 m, frequency 0.5 Hz

15-18 m Find a function that models the simple harmonic
motion having the given properties. Assume that the displacement
is at its maximum at time 7 = 0.

.15, amplitude 60 ft, period 0.5 min

16. amplitude 35 cm, period 8 s
17. amplitude 2.4 m, frequency 750 Hz
18. amplitude 6.25 in., frequency 60 Hz

19-26 m An initial amplitude k, damping constant ¢, and
frequency f or period p are given. (Recall that frequency and
period are related by the equation f = 1/p.)

(a) Find a function that models the damped harmonic motion.
Use a function of the form y = ke ' cos wt in Exercises
19-22, and of the form y = ke™ ' sin wt in Exercises 23-26.

(b) Graph the function.

" 19. k=2, c=15 f=3

20. k=15, ¢=0.25 f=0.6
21. k=100, ¢=0.05 p=4
22. k=0.75, ¢=3, p=3w

23. k=7, ¢=10, p=m/6
2. k=1, c=1, p=1

25. k=03, ¢=02, f=20
26. k=12, ¢=001, f=38



APPLICATIONS

. A Bobbing Cork A cork floating in a lake is bobbing in
simple harmonic motion. Its displacement above the bottom of
the lake is modeled by

y = 0.2cos 207t + 8

where y is measured in meters and 7 is measured in minutes.

(a) Find the frequency of the motion of the cork.

(b) Sketch a graph of y.

(¢) Find the maximum displacement of the cork above the
lake bottom.

. FM Radio Signals The carrier wave for an FM radio
signal is modeled by the function

y = asin(27(9.15 X 107)1)

where 7 is measured in seconds. Find the period and frequency
of the carrier wave.

. Blood Pressure Each time your heart beats, your blood
pressure increases, then decreases as the heart rests between
beats. A certain person’s blood pressure is modeled by the
function

p(r) = 115 + 25 sin(1607¢)

where p(t) is the pressure in mmHg at time 7, measured in

minutes.

(a) Find the amplitude, period, and frequency of p.

(b) Sketch a graph of p.

(¢) If a person is exercising, his or her heart beats faster. How
does this affect the period and frequency of p?

. Predator Population Model In a predator/prey model
the predator population is modeled by the function

y = 900 cos 2 + 8000

where 7 is measured in years.

(a) What is the maximum population?

(b) Find the length of time between successive periods of
maximum population.

. Spring-Mass System A mass attached to a spring is
moving up and down in simple harmonic motion. The graph
gives its displacement d() from equilibrium at time 1. Express
the function d in the form d(¢) = a sin wr.

d(t) A
5 £

[V11¥}

| —
il

75 I

32. Tides The graph shows the variation of the water level rela-

tive to mean sea level in Commencement Bay at Tacoma, Wash-
ington, for a particular 24-hour period. Assuming that this varia-

SECTION 5.6 [ Modeling Harmonic Motion ~ 4211

tion is modeled by simple harmonic motion, find an equation of
the form y = «a sin wr that describes the variation in water level
as a function of the number of hours after midnight.

y
(feet)

6_,

Mean ‘ .
sealevel 0\ 3 f6 o2\ 3 [f6 9 12
| i (time)
[ |
' |
—6+ | |
' |
MIDNIGHT AM I PM. MIDNIGHT

33. Tides The Bay of Fundy in Nova Scotia has the highest tides

34.

.35

36.

in the world. In one 12-hour period the water starts at mean sea
level, rises to 21 ft above, drops to 21 ft below, then returns to
mean sea level. Assuming that the motion of the tides is simple
harmonic, find an equation that describes the height of the tide
in the Bay of Fundy above mean sea level. Sketch a graph that
shows the level of the tides over a 12-hour period.

Spring-Mass System A mass suspended from a spring
is pulled down a distance of 2 ft from its rest position, as
shown in the figure. The mass is released at time 1 = 0 and al-
lowed to oscillate. If the mass returns to this position after I s,
find an equation that describes its motion.

Rest
position

Spring-Mass System A mass is suspended on a spring.
The spring is compressed so that the mass is located 5 cm
above its rest position. The mass is released at time r = 0 and
allowed to oscillate. It is observed that the mass reaches its
lowest point 3 s after it is released. Find an equation that de-
scribes the motion of the mass.

Spring-Mass System The frequency of oscillation of an
object suspended on a spring depends on the stiffness k of the
spring (called the spring constant) and the mass m of the ob-
ject. If the spring is compressed a distance a and then allowed
to oscillate, its displacement is given by

f(t) = acos Vk/mt

(a) A 10-g mass is suspended from a spring with stiffness
k = 3. If the spring is compressed a distance 5 cm and
then released, find the equation that describes the
oscillation of the spring.

(b) Find a general formula for the frequency (in terms of
k and m).
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(¢) How is the frequency affected if the mass is increased? Is
the oscillation faster or slower?

(d) How is the frequency affected if a stiffer spring is used
(larger k)? Is the oscillation faster or slower?

Ferris Wheel A ferris wheel has a radius of 10 m, and the
bottom of the wheel passes 1 m above the ground. If the ferris
wheel makes one complete revolution every 20 s, find an equa-
tion that gives the height above the ground of a person on the
ferris wheel as a function of time.

Clock Pendulum The pendulum in a grandfather clock
makes one complete swing every 2 s. The maximum angle that the
pendulum makes with respect to its rest position is 10°. We know
from physical principles that the angle 6 between the pendulum
and its rest position changes in simple harmonic fashion. Find an
equation that describes the size of the angle 6 as a function of
time. (Take # = O to be a time when the pendulum is vertical.)
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Variable Stars The variable star Zeta Gemini has a
period of 10 days. The average brightness of the star is 3.8
magnitudes, and the maximum variation from the average is
0.2 magnitude. Assuming that the variation in brightness is
simple harmonic, find an equation that gives the brightness of
the star as a function of time.

Variable Stars Astronomers believe that the radius of a
variable star increases and decreases with the brightness of the
star. The variable star Delta Cephei (Example 4) has an aver-
age radius of 20 million miles and changes by a maximum of
1.5 million miles from this average during a single pulsation.
Find an equation that describes the radius of this star as a
function of time.

Biological Clocks Circadian rhythms are biological
processes that oscillate with a period of approximately 24 hours.
That is, a circadian rhythm is an internal daily biological clock.
Blood pressure appears to follow such a rhythm. For a certain
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Blood pressure (mmHg)

individual the average resting blood pressure varies from a max-
imum of 100 mmHg at 2:00 p.M. to a minimum of 80 mmHg at
2:00 a.M. Find a sine function of the form

f(t) = asin(w(t — ¢)) + b

that models the blood pressure at time 7, measured in hours
from midnight.
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The armature in an electric generator
is rotating at the rate of 100 revolutions per second (rps). If the
maximum voltage produced is 310V, find an equation that de-
scribes this variation in voltage. What is the rms voltage? (See
Example 6 and the margin note adjacent to it.)

Electric Generator The graph shows an oscilloscope
reading of the variation in voltage of an AC current produced
by a simple generator.

(a) Find the maximum voltage produced.

(b) Find the frequency (cycles per second) of the generator.
(¢) How many revolutions per second does the armature in
the generator make?

Find a formula that describes the variation in voltage as a
function of time.

(d)

When a car with its horn blowing drives
by an observer, the pitch of the horn seems higher as it ap-
proaches and lower as it recedes (see the figure on the next
page). This phenomenon is called the Doppler effect. If the
sound source is moving at speed v relative to the observer and
if the speed of sound is v, then the perceived frequency f is
related to the actual frequency f, as follows:

f:f< Vo >
] Jo o * v

We choose the minus sign if the source is moving toward the
observer and the plus sign if it is moving away.




