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CHAPTER 5 | Trigonometric Funciions: Unit Grcle Approach

(1) Explain what happens 1o the shadow as the time

() Sketch a graph of the function d for 0 = 7 <C 5
7 B ; . : eachec 4 T T A S 3l
{£) What happens to the distance o o5 1 approaches 17 approaches 6 pan (that s, as 1 — 127),

58. Length of a Shadow  On a day when the sun passes

directly overhead at noon, a six-foot-tall man casts a shadow =~ —mW - —-—

of length DISCOVERY = DISCUSSION = WRITING
S(1) = 6| cot—1 59, Redgxcﬁaﬁ Fmﬁmulz‘is Use the graphs in Figure 5 to
12 explain why the following formulas are true,
where § is measured in feet and ¢ is the number of howrs 77) ’
. tanf ¥ — = ] = —cotx

since 0 AM. 2
(a) Find the length of the shadow at 8:00 A.Mm., noon, N

2:00 py., and 5:43 pa. sec( v - g ) =8 X

2/

(h) Sketch a graph of the function § for O < ¢ < 12,

(e) From the graph determine the values of ¢ at which the
length of the shadow eguals the man’s height. To what
time of day does each of these values correspond?

hry

FIGURE 1 Gruphy of the sine funce-
fion and the restricted sine function

& The Inverse
d Cotangent Functions

Recall from Section 2.7 that the inverse of a function fis a function £ that reverses the rule
of f. For a function to have an inverse, it must be one-to-one. Since the wigonometiic func-
tions are not one-to-one, they do not have inverses. It is possible, however, to restrict the do-
mains of the trigonometric functions in such a way that the resulting functions are one-to-one.

" The Inverse Sine Function

Let's fivst consider the sine function. There are many ways fo restrict the domain of sine so that
the new function is one-to-one. A natural way to do this is to restrict the domain 1o the inter-
val [ =7/2, /2], The reason for this choice is that sine is one-to-one on tlis interval and
moreover attains each of the values in its range on this interval, From Figure 1 we see that sine
is one-to-one on this restricted domain (by the Horizontal Line Test) and so has an inverse.
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FIGURE 2 Graphofy =

sin

—1

X

¥ = Kin

SECTION 5.5 frigonometslc functions and The

function on this resivicted domain. The
cting the graph of 3

We can now define an inverse sine
x is shown in Figure 2t

—1

it is obtained by 1o

:

The inverse siﬁe function is the function sin
£ 1. ~
[—7/2, w[2] defined by

sinTx =y S osiny =y

The inverse sine function is also called aresine, denoted by aresin.

“Uwith domain [—1, 1] and range

ir Graphs 407

Thus, y = ‘;ilfl x is the juunber i jhe interval [ —
words, sin(sin™'x) =

in Section 2.7, we have the following eancellation properties.

sin{sin”'x) =y for —l=x=|
NP . ‘Tr o
sinMsiny) =x for  — TExE

EXAMPLE 1 [ Evaluating the Inverse Sine Function

Find ecach value,

Lo - 1
{a} sin é {b) sin "5

SOLUTIOH
. N [ .
{a) The number in the interval [~”r/2 77/2] whose sine is 3 is 77/6. Thus, sin

{¢) sin™!

] e

(b) The number in the interval [ —r/2, 7/2] whose sine is —1 is —#/6. Thus,
L i I
sin”!(—%) = —7/6.

. . 3 - « . e N
{¢) Since3 > 1, itis not in the domain of sin~' ¥, so sin ™' 4 is not defined.

NOW TRY EXERCISE 3

wf2, 7'/2* whaose sine is x. In other
x. In fact, from the general properties of inverss functions stadied

= a6,

EXAMPLE 2 | Using a Calculator to Evaluate Inverse Sine
Find approximate values for () sin™'(0.82) and (b} sin™'4,

SGLYUTION

AR(‘

{a) sin"'{0.82

SN kuy(s) on the wlcuhﬂm (wuh the caluxlatm in radian mode), we Uu
} = 096141 (b) sin ’g == (),33984

¢ NOW TRY EXERCISES 11 AND 21

When evaluating expressions involving sin™!, we need 1o remember that

sin™!is the interval [—#/2, w/2].

l Fvaluating Expressions with Inverse Sine
Find each valae

e -
o Ty IR S
{a) sin &sm ey (b} sin | sin-
>

\

the range of
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FIGURE 3 Graphs of the cosine
function and the restricted cosine
function

¥

¥y = ¢os ¥

1

-1

FIGURE 4 Graphofy = cos )y

(2) Since /3 is in the interval |

erties of nverse functions:

{b) We first evaluate the expression in the parentheses:

® ONOW TRY EXERCISES 37 AND 33

The Inverse Cosine Function

If the domain of the cosine function is restricted to the interval [0, #7 ], the resulling func-
tion is one-to-one and 5o has an inverse. We choose this inferval because on it, cosine at-
tains each of its values exactly once (see Figure 3),

¥ ¥
= I
27 ~}r JrU v (); " X
o -1 ! ~1 T
|
yE oSy y=cosy. D= o= g

¥

DEFINITION OF

s

HE INVERSE COSIHE FUNMTION

i

P

The inverse ceosine function is the function cos™

[0, 7] defined by

with domainr [—1, 1] and range

cos 'y =y & cos y =X

The inverse cosine function is also called arceosine, denoted by arceos.

Thus, y = cos ™' x is the monber in the interval [0, 7] whose cosine is x. The follow-
ing cancellation preperties follow from the inverse function properties.

- . :
cos(ecos 'x) =5 for -] =y %
cos Heosx) =a for 0= l

The graph of y = cos™ v is shown in Figure 4: it is obtained by reflecting the graph of
s = ocos L O s =

v = g, in the line vy = 1

ot
!
i

EXAMPLE 4 | Evaluating the Inverse Cosine Function
Find each value.

V3 ” ‘
= by cos™' 0 {¢) cos™

AR

{a) cos™
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SOLUTION

{a} The uumb\t in the iuterval {0, 7 | whose cosine is 'V is /6. Thus,
cas TV %"ﬂ’i = 5/6.
{(b) The number in the interval [0, 7] whose cosine is 0 is #7/2. Thus, cos” 10 =

{£) Since no rational multiple of 7 has cosine 3, we use a caleulator (in radian mode)
to find this value approximately:

1 5 - P )
08 == 0.77519
COSs 7 y

v NOW TRY EXERCISES 5 AND 13

EXAMPLE 5 l Evaluating Expressions with Inverse Cosine

Find each value.

, - 27 o 5w
(a) cos ‘(cos T) (b) cos ‘(m‘)s :)
3 3.

SOLUTION

(a) Since 277/3 is in the interval {0, ] we can use the above cancellation properties:

27 ) 2
cos | cos— |} = —
3 3

s

(b) We first evaluate the expression in the parentheses:

cos™! (cxt)s{ir) = cos !(3)

CNOW TRY EXERCISES 28 AND 23

The Inverse Tangent Functi

We restrict the domain of the tangent function to the interval {(—/2, 7/2) in order to ob-
tain a one-to-one function.

s
e

JEFINITION OF THE INVERSE TANGENT FUNCYIH

%

The inverse tangent function is the function tan™!

with domain R and range
(=2, 7/2) defined by

mnTly =y 8 tany =y

The inverse tangent function is alse called arctangent, denoted by aretan.

Thus, v = tan”~ 'y is the munber in the interval (= /2, w/2) whose tangent is x. The
{ollowing ¢z mu&i!,mtm properties follow from the niverse iuuumn properties,

tan(tan " 'x) = 1 for v E®

. . s
Manx) =1 for — <y —
( ; .
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Figure 5 shows the graph of y = tan x on the interval {—7/2, #/2) and the graph of
its inverse Tunction, v = fan" ' .

y
~f 1
$ Lt
- kY { i kY
/ 1
FIGURE 5 Graphs of the restricted i i gs
tangent function and the inverse tan- i az ) )
gent function y=py, 5 <x g ety

EXAMPLE 6 } Evaluating the Inverse Tangent Function

Find each value,

(a) tan~'1 (b) tan~" V3 (¢) tan™'(20)

S5O0LUTIOHN

(2) The number in the interval (—7/2, 7/2) with tangent | is /4. Thus, tan™' [ = /4.

(by The mlmbet in the interval (—%/2, 7/2) with tangent V/ /3is ar/3. Thus,
tan~"N/3 = /3.

{c) We use a caleulator (in radian mode) to find that tan"(ﬁ(}) = —1,52084.

NOWTRY EXERCISES 7 AND 17

The Inverse Secant, Cosecant, and Cotangent Functions

To define the inverse functions of the secant, cosecant, and cotangent functions, we re-
strict the domain of each function to a set on which it is one-to-one and on which it at-
tains all its values. Although any interval salisfying these criteria is appropriate, we
choose to restrict the domains in a way that simplifies the choice of sign in computations
involving inverse trigonometric functions. The choices we make are also appropriate for
calculus, This explains the seemingly strange restriction for the domains of the secant and
cosecant functions. We end this section by displaying the graphs of the secant, cosecant,
and cotangent functions with their restricted domains and the graphs of their inverse func-
tions (Figures 6-8).

e e

GURE 6 The ipverse secant
function
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FIGURE 7 The inverse cosecant
function R
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FIGURE 8 The inverse cotangent
function

{OWNCEPTS /5
. (@) sin"{~1) by sin™! V2

B

(¢} sin”(~2)

1. {8) To define the inverse sine function, we restrict the domain 2
of sine to theinterval ___ On this interval the | V3
; on e anction sin™! To 5 (a) cosTH-1) {b) cos™'4 Y cos”H|
sine function is one-to-one, and its inverse function sin s M S ) cos 3 (c) cos 7
is defined by sin™' x = y < sin = __.___. For ~
. ’ A . o V2
example, sin™' § = becausesin = . 6. (3) cos (7’ (B) cos™ 1. (e) cos (— 5 )
(b} To define the inverse cosine function we restrict the \
. . . . i NG et V3
domain of cosine to the interval _________ . On this -+ 7. (@) tan”'(~1) (h) tan™V3 (o) tan 3
interval the cosine function is one-lo-one and its inverse
; /=
S -1 SO s =y . . — . V3
function cos™ is defined by cos 7' x = v &= 8 (@) tan~' 0 (h) tan"H{—V3) (©) tauf‘<~ S )
cos = . For example, cos ' 4= o
e ¢ _ Ly oo ey
because cos = . 9. (a) cos™{—}) (b) sin '(- P {¢) tan"'1
2. The cancellation properly sin~!{sin x} = x is valid for x in the T
. : . Lo e PR RN T
interval o . Which of the following is not true? 10. (a} cos 0 () sin™" 0 (e) sin™{~3)
) T r
(a) sin | sin— } = —
.3 3 11-22 ' Use a caleulsior o find an approximate value of each ex-
( [ 104 pression correct o five decimal places, if it is defined,
) sin” ' sin ) = o
®) N 3 CLiL sinT'g 12, sin {4
o130 cosTH{~E) 14, cos H(F)
SHILLS 15, cos H{—0.92761) 16, sin”'0.13844)
) ) ) R i o . 17, tan”t G P T P PO,
3-10 B Find the exact value of cach expression, if it is defined, 7o tan 10 18, tan"(=26)
v 19, tan”(1.23456) 20, cosT1{1.23456)
G (a) sin”t 1 by sin”! — £) sin” 2 b - ) .
a) sin ) © 2L sinT(~0.25713) 22, tan " H{~0.25713)
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2344 & Find the exact value of the expression, if it s defined,

23, sin{sin” 24, cos{oos™! 2}
25, tan{an”t 5) 26. sin(sin™! 5}
) 7 o /3 N - . %
27, f;nn( sin ( 7') 28, tani tan” ,;
AN N 2 / X NS
. PN \
-1 N . T
<28, cosT cos—— 30, tan” tm )
6
31, sin” ‘ sm ) 32, tan ™' tan ))

'Jz

;
33 sin”‘(s‘in i)
33 G
35, cos™ L()S(

o
B

(-
)
) e(nl)
=) (o)

37, an‘ tan

39, ta;x(si;l"‘ B 40, cos{sin™' 0)
7 £ ¢ [’
Vi . N2
41, cas(sin“—‘;—*) 42. mn(sm‘] - )
43, sin(tan” (= 1)) 44, sin(tan ‘(—'\«""3))
w5 R

45, Two Different Compositions  Let fand g be the
functions
Fx) = sin(sin ')
and g{x) = sin"{sin ¥)

By the cancellation properties, f{x} = xand ¢(x) = x for
suitable values of v, But these functions are not the same for
all x. Graph both f and ¢ to show how the functions differ.
(Think carefully about the domain and range of sin™').

46-47 m Graphing Inverse Trigonometric Functions
(a) Graph the function and make a conjecture, and (b} prove that
your conjecture is true,

46, v = sin"'x + cos Ty

b
47, y = tan"ty + tan”' —
X

Periodic behavior

otion = Damped Harmonic Motion

behavior that repeats over and over agabn—is common in nature.

Perhaps the most familiar example is the daily rising and setiing of the sun, which re-

sults in the repetitive pattern of day, night, day, night,

. Another example is the

daily variation of tide levels at the beach, which results in the repetitive pattern of high

tide, low tide, high tide, Tow tide. . . ..
crease in a predictable periodic patteriu A larg

Certain animal populations increase and de-
e population exhausts the food supply,

which causes the population to dwindle: this in turn results in 2 more plentiful food
supply. which makes it possible for the population to increase: and the pattern then re-

peats over and over

page 398).

(see the Discovery Project Predaror/Prey Models referenced on

Other common examples of periodic behavior involve motion that is cavsed by vibra-
tion or oscillation. A mass suspended from a spring that has been compressed and then al-

lowed to vibrate vertically is a simple example. This **back and forth

” motion also ocowrs

in such diverse phenomena as sound waves, light waves, alternating electrical current, and
pulsating stars, to name a few, In this section we consider the problem of modeling peri-
odic behavior,

The trigonometric functions are ideally suited for madeling periodic behavior, A glance

at the graphs of the sine and cosine function
themselves exhibit periodic behavior, Figure

1 shows the graph of y = sin £, If we think

s, for instance, tells us that these functions

of






