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Graphs of Tangent, Cotangent, Secant, and Cosecant B Graphs of Transforma-
tions of Tangent and Cotangent B Graphs of Transformations of Cosecant
and Secant

In this section we graph the tangent, cotangent, secant, and cosecant functions and trans-
formations of these functions.

V Graphs of Tangent, Cotangent, Secant, and Cosecant

We begin by stating the periodic properties of these functions. Recall that sine and cosine
have period 27. Since cosecant and secant are the reciprocals of sine and cosine, respec-
tively, they also have period 27 (see Exercise 55). Tangent and cotangent, however, have
period 7 (see Exercise 85 of Section 5.2).

PERIODIC PROPERTIES
The functions tangent and cotangent have period 7:

tan(x + ) = tan x cot(x + 7) = cot x
The functions cosecant and secant have period 27:

ese(x + 27) = cscx sec(x + 27) = secx

X tan x

0 0
/6 0.58
/4 1.00
/3 1.73
14 5.80
1.5 14.10
1.55 48.08
1.57 1,255.77
1.5707 10,381.33

Arrow notation is discussed in

Section 3.7

Asymptotes are discussed in

Section 3.7

We first sketch the graph of tangent. Since it has period 7, we need only sketch the
graph on any interval of length 77 and then repeat the pattern to the left and to the right.
We sketch the graph on the interval (—/2, 7/2). Since tan(m/2) and tan(—/2) aren’t
defined, we need to be careful in sketching the graph at points near 77/2 and —/2.
As x gets near 77/2 through values less than 77/2, the value of tan x becomes large. To see
this, notice that as x gets close to /2, cos x approaches 0 and sin x approaches 1 and so
tan x = sin x/cos x is large. A table of values of tan x for x close to /2 (=1.570796) is
shown in the margin.

Thus, by choosing x close enough to 77/2 through values less than 77/2, we can make
the value of tan x larger than any given positive number. We express this by writing

T
tan x — oo as xX— 5
This is read “tan x approaches infinity as x approaches /2 from the left.”
In a similar way, by choosing x close to —7/2 through values greater than —7/2, we
can make tan x smaller than any given negative number. We write this as

7T+
tan x - —o0 as X—> —E

This is read “tan x approaches negative infinity as x approaches —r/2 from the right.”
Thus, the graph of y = tan x approaches the vertical lines x = 77/2 and x = —17/2. So these
lines are vertical asymptotes. With the information we have so far, we sketch the graph of
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y = tan x for —7/2 < x < 7/2 in Figure 1. The complete graph of tangent (see Figure 5(a)
on the next page) is now obtained using the fact that tangent is periodic with period 7.
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Evaluating Functions
on a Calculator

How does your calculator evaluate sin ¢,
cos t,e',In t, \Vt,and other such func-
tions? One method is to approximate
these functions by polynomials, be-
cause polynomials are easy to evaluate.
For example,
) 3 tS f7
sint=t—— +

31 51 7!
F e
cost=1—~—=+F———=
214 el

wheren! = 1+2+3+---+n.These remark-
able formulas were found by the British
mathematician Brook Taylor (1685—
1731).For instance, if we use the first
three terms of Taylor’s series to find
cos(0.4), we get

04)2  (04)*
cos04=1— (04) 049
2! 41
=~ 0.92106667

(Compare this with the value you get
from your calculator.) The graph shows
that the more terms of the series we
use, the more closely the polynomials
approximate the function cos r.

One period of y = tan x

One period of y = cot x

The function y = cot x is graphed on the interval (0, 7r) by a similar analysis (see Fig-
ure 2). Since cot x is undefined for x = n7r with 1 an integer, its complete graph (in Fig-
ure 5(b) on the next page) has vertical asymptotes at these values.

To graph the cosecant and secant functions, we use the reciprocal identities

1 |
and secx =

CSCx —

sin x CoS X

So to graph y = csc x, we take the reciprocals of the y-coordinates of the points of the
graph of y = sin x. (See Figure 3.) Similarly, to graph y = sec x, we take the reciprocals
of the y-coordinates of the points of the graph of y = cos x. (See Figure 4.)
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FIGURE 4
One period of y = sec x

FIGURE 3
One period of y = csc x

Let’s consider more closely the graph of the function y = cscx on the interval
0 < x < 7. We need to examine the values of the function near 0 and 7r, since at these
values sin x = 0, and csc x is thus undefined. We see that

CSC X — 00 as r— 0

CSC X — 00 as X—> T

Thus, the lines x = 0 and x = 77 are vertical asymptotes. In the interval 7 < x < 2 the
graph is sketched in the same way. The values of csc x in that interval are the same as
those in the interval 0 < x < 77 except for sign (see Figure 3). The complete graph in Fig-
ure 5(c) is now obtained from the fact that the function cosecant is periodic with period
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(b) y=—tanx
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27r. Note that the graph has vertical asymptotes at the points where sin x = 0, that is, at
x = nmr, for n an integer.

. ‘ "Y ‘ \7

| | | | | |

[ | | | | |

| | | [ | |

\ | \ \ \ \

| | | | [ [

[ [ \ [ | 14 \

| | \ | | \

3 S @ 0 L T 37 X 37N\ —Tr T 0 T T 3 X
2 2 T 2 2 2 | T2 T 2 | 2

| | | | | [

[ | | | | \

| | \ [ | |

| [ | [ | |

| | | | | |

(a) y = tan x (b) y = cot x

| 5 ! | n >t o J
\ | \ | | |
\ [ \ | | |
| | | | | |
| | | | | |
| T 14 | 37 | I I |
I = | A I [ | [

R 0 T T X 37— T 0 T T 3 X

Y \ T 9 \ 2 —7 =1+ 2 2
| [ | | | |
| | | | | |
| | | | | |
| | | | | [
| | | | | I
(c) y=cscux (d) y =secx
FIGURE 5

The graph of y = sec x is sketched in a similar manner. Observe that the domain of
sec x is the set of all real numbers other than x = (77/2) + nmr, for n an integer, so the
graph has vertical asymptotes at those points. The complete graph is shown in Figure 5(d).

It is apparent that the graphs of y = tan x, y = cot x, and y = csc x are symmetric about
the origin, whereas that of y = sec x is symmetric about the y-axis. This is because tan-
gent, cotangent, and cosecant are odd functions, whereas secant is an even function.

V Graphs of Transformations of Tangent and Cotangent

We now consider graphs of transformations of the tangent and cotangent functions.

EXAMPLE 1 \ Graphing Tangent Curves

Graph each function.

(a) y=2tanx (b) y = —tanx

SOLUTION We first graph y = tan x and then transform it as required.

(a) To graph y = 2 tan x, we multiply the y-coordinate of each point on the graph
of y = tan x by 2. The resulting graph is shown in Figure 6(a).

(b) The graph of y = —tan x in Figure 6(b) is obtained from that of y = tan x by
reflecting in the x-axis.

* .NOW TRY EXERCISES 9 AND 11 |
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Since y = tan x completes one period
between x = — 35 and x = 73, the func-
tion y = tan 2(x — §) completes one
period as 2(x — T) varies from —3
Start of period: End of period:

2x—=F)==%F 2x—3) =

So we graph one period on the

interval (0, 5).

to 5.

Since the tangent and cotangent functions have period 7, the functions
y = atan kx and y = acot kx (k>0)

complete one period as kx varies from 0 to 7, that is, for 0 = kx = #. Solving this in-
equality, we get 0 =< x < 7/k. So they each have period 7/k.

TANGENT AND COTANGENT CURVES

The functions

Yy = atan kx and  y = acot kx (k>0)

have period 7r/k.

Thus, one complete period of the graphs of these functions occurs on any interval of
length 7 /k. To sketch a complete period of these graphs, it’s convenient to select an in-
terval between vertical asymptotes:

To graph one period of y = a tan kx, an appropriate interval is <—i, 2£k>
To graph one period of y = a cot kx, an appropriate interval is (O, %)

EXAMPLE 2 | Graphing Tangent Curves

Graph each function.
(a) y = tan 2x (b) y = tan 2<x = %)

SOLUTION

(a) The period is 77/2 and an appropriate interval is (—r/4, 7/4). The endpoints
x = —7/4 and x = /4 are vertical asymptotes. Thus, we graph one complete
period of the function on (—/4, 7/4). The graph has the same shape as that of
the tangent function, but is shrunk horizontally by a factor of 3. We then repeat that
portion of the graph to the left and to the right. See Figure 7(a).

(b) The graph is the same as that in part (a), but it is shifted to the right 77/4, as shown
in Figure 7(b).
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FIGURE 7

. NOW TRY EXERCISES 27 AND 39 i




Since y = cot .x completes one period
between x = 0 and x = 77, the function
y = 2 cot(3x — 3) completes one
period as 3x — 5 varies from 0 to 7.
Start of period: End of period:

3x—353=0 x—5=m

A, — 37
IR, = =¥

S
3x =3

xX=z xX=73

So we graph one period on the
interval (£, 5).

SECTION 5.4 | MoreTrigonometric Graphs 403

EXAMPLE 3 | A Shifted Cotangent Curve

Graphy = 2 cot(3.\‘ — %)

SOLUTION  We first put this in the form y = a cot k(x — D) by factoring 3 from the ex-
T

y= 2cot<3x = %) = 200t3<,\‘ — %)

Thus the graph is the same as that of y = 2 cot 3x but is shifted to the right 77/6. The pe-
riod of y = 2 cot 3x is 77/3, and an appropriate interval is (0,77/3). To get the corre-
sponding interval for the desired graph, we shift this interval to the right 77/6. This gives

a w m T
Bt— ==~ —
( 63 6) (6 2>

Finally, we graph one period in the shape of cotangent on the interval (77/6, 77/2) and re-
peat that portion of the graph to the left and to the right. (See Figure 8.)

ion 3x — —:
pression 3x >

l n’t | |

| \ | \ \

\ \ | \ |

\ \ | \ |

\ | | | |

| | | | \

J | \ | \

7 A 7 O\ = o\ =z o2\ 5z x

2 3 6 6 3 2 3 6

| | | \ |

FIGURE 8 \ | ! \ |

=2 t<3~~ﬂ> | | | | |

Yy =2cot| 3x = 7 ‘ | | | |
“ . NOW TRY EXERCISE 43

V Graphs of Transformations of Cosecant and Secant

We have already observed that the cosecant and secant functions are the reciprocals of the
sine and cosine functions. Thus, the following result is the counterpart of the result for
sine and cosine curves in Section 5.3.

COSECANT AND SECANT CURVES
The functions
(k>0)

y = acsc kx and y = a sec kx

have period 27 /k.

An appropriate interval on which to graph one complete period is [0, 27/k]

EXAMPLE 4 | Graphing Cosecant Curves

Graph each function.

1
(b) y = 5 CSC(Z,\' + Tr)

1
) = = 2. >
(a) y > csc 2x )
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SOLUTION

(a)

Since y = csc x completes one period (b)
between x = 0 and x = 277, the func-

The period is 277/2 = 7. An appropriate interval is [0, 77], and the asymptotes occur
in this interval whenever sin 2x = 0. So the asymptotes in this interval are x = 0,

x = 7/2, and x = 7. With this information we sketch on the interval [0, 77] a graph
with the same general shape as that of one period of the cosecant function. The
complete graph in Figure 9(a) is obtained by repeating this portion of the graph to
the left and to the right.

We first write

; o e i 1 T 1 T
tion y = 5 csc(2x + 5) completes one y=—csc|2x+— | ==csc2| x +—
period as 2x + 5 varies from 0 to 2. 2 2 2 4
Start of period: End of period: From this we see that the graph is the same as that in part (a) but shifted to the left
4+ I=0 2+ T = o /4. The graph is shown in Figure 9(b).
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FIGURE 9
© _NOW TRY EXERCISES 33 AND 45 |

EXAMPLE 5 \ Graphing a Secant Curve

Graph y = 3 sec 1x.

SOLUTION The period is 27 + 1 = 4. An appropriate interval is [0, 447], and the as-
ymptotes occur in this interval wherever cos 3x = 0. Thus, the asymptotes in this inter-
val are x = 7, x = 37r. With this information we sketch on the interval [0, 477] a graph
with the same general shape as that of one period of the secant function. The complete
graph in Figure 10 is obtained by repeating this portion of the graph to the left and to the
right.
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* . NOW TRY EXERCISE 31 &
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CONCEPTS

1. The trigonometric function y = tan x has period

and asymptotes x =
tion on the interval (—7/2, 7/2).

2. The trigonometric function y = csc x has period

and asymptotes x = . Sketch a graph of this func-

tion on the interval (—r, 7).

. Sketch a graph of this func-

SKILLS

3-8 m Match the trigonometric function with one of the
graphs [-VL.

3. f(x) = tan(.\' + %)
5. f(x) = cot 2x
7. f(x) = 2secx

4. f(x) = sec2x
6. f(x) = —tanx
8. f(x) =1+ cscx
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9-54 ® Find the period and graph the function.
< 9. y=dtanx 10. y = —4tanx
<11y = —Jtanx 12. y =dtanx
13. y = —cotx 14. y = 2 cot x
15. y =2cscx 16. y = Jcscx

17,

19.

21.

23.

25.

29.
*.31.
® .33,

35.

37.

41.

® 43,

®.45,

47.

49.

51.

53.

55.

56.

.\' =

y =

Ly =

y =

y =

y =

¥ =

Ly =

y=

y =

y =

y =

3 secx

tan(.\' +
csc(.\' =
cot (.\' -+
£
—sec| x —
2

tan 4.x

N ERSIE R

oy — —— —
S~

T

tan —x
4

sec 2x

csc 4x

2 tan 37y

5 csc —77.\‘
2

tan 2(.\’ + E)
2

tan 2(x — 77)

cot<2.\‘ — z)
2
2 csc(w.\' — E)
3
5 sec( 3x — =
sec| 3x )

2

T

—2 tan| 2% — —
an( X 3)

. y= —3secux

t ( “
.y =tan|\ x — —
: 4

. Yy = sec <.\‘ +

&3
N— ~———

24, y=2 csc(.\' — E)
3
26. y=3 csc(,\' + E)
: 2
28. y = tan %.\'
30. y = cot %\‘
32. y = 5Scsc3x
34, y=cscix
36. y = 2tan z.\‘
2
38. y = 5sec 2wy
40. y = csc 2(.\‘ + E)
: 2
42. y = sec 2<.\‘ - E)
2
44, y = Stan(mx — 7)

52.

54.

|
.y =2 sec(—.\' — 1)
: 2 3

: y = 3sec(2mx — )

an 2+ )
L y=tan| x + —
3 112 X 1

T
y= sec<3.\‘ + 7)
: 2

y = 2csc(3x + 3)

(a) Prove that if fis periodic with period p, then 1/f is also

periodic with period p.

(b) Prove that cosecant and secant each have period 2.

Prove that if f and g are periodic with period p, then f/g is

also periodic, but its period could be smaller than p.

APPLICATIONS

57. Lighthouse The beam from a lighthouse completes one
rotation every two minutes. At time 7, the distance d shown in

the figure on the next page is

d(t) = 3 tan 7t

where 7 is measured in minutes and ¢ in miles.
(a) Find d(0.15), d(0.25), and d(0.45).
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(b) Sketch a graph of the function d for 0 = t < L
(c) What happens to the distance d as 1 approaches 17

(d) Explain what happens to the shadow as the time
approaches 6 P.M. (that is, as t — 127).

58. Length of a Shadow On a day when the sun passes
directly overhead at noon, a six-foot-tall man casts a shadow
of length

T
cot—1

S(r) =6 T

where S is measured in feet and 7 is the number of hours

since 6 A.M.

(a) Find the length of the shadow at 8:00 A.M., noon,
2:00 p.M., and 5:45 p.m.

(b) Sketch a graph of the function S for 0 <1 < 12.

(¢) From the graph determine the values of 7 at which the
length of the shadow equals the man’s height. To what
time of day does each of these values correspond?

DISCOVERY=DISCUSSION = WRITING

59. Reduction Formulas Use the graphs in Figure 5 to
explain why the following formulas are true.

anv-2) = —co

an| x — — | = —cotx
2

see, X — — || = ¢seix
2

5.5 INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR GRAPHS

The Inverse Sine Function B The Inverse Cosine Function - The Inverse
Tangent Function P The Inverse Secant, Cosecant, and Cotangent Functions

We study applications of inverse
trigonometric functions to triangles
in Sections 6.4-6.6.

Recall from Section 2.7 that the inverse of a function fis a function f ' that reverses the rule
of f. For a function to have an inverse, it must be one-to-one. Since the trigonometric func-
tions are not one-to-one, they do not have inverses. It is possible, however, to restrict the do-
mains of the trigonometric functions in such a way that the resulting functions are one-to-one.

V¥ The Inverse Sine Function

Let's first consider the sine function. There are many ways to restrict the domain of sine so that
the new function is one-to-one. A natural way to do this is to restrict the domain to the inter-

val [—/2, 7/2]. The reason for this choice is that sine is one-to-one on this interval and

moreover attains each of the values in its range on this interval. From Figure 1 we see that sine

is one-to-one on this restricted domain (by the Horizontal Line Test) and so has an inverse.

FIGURE 1 Graphs of the sine func-
tion and the restricted sine function

y =sinx

y = sin x, ,% =x=T7



