1. Sketch the graph of the following functions.

2.
$$f(x) = ln(-x) + 1$$

3.
$$f(x) = -ln(x-2)$$

2. Evaluate the following.

a.
$$log_3(81)$$

4. $f(x) = e^x$

b.
$$log_2(^1/_8)$$

3. Rewrite the following exponential equations as log equations.

a.
$$4^5 = 1024$$

b.
$$e^2 = 7.39$$

4. Use the change of base formula towrite the following as a quotient of Common logs and Natural logs.

a.
$$log_7(13)$$

b.
$$ln(4)$$

5. Use the properties of logarithms to rewrite the expressions as the sum or difference and/or the constant multiple of logs.

a.
$$\log\left(\frac{\sqrt{a}}{b^6}\right)$$

b.
$$\ln(x^4 \bullet \sqrt[3]{y})$$

6. Use the properties of logarithms to rewrite the expressions as a single log.

a.
$$3\ln(x) + \frac{1}{2}\ln(y)$$

b.
$$5\log(p^2) - 2\log(q^3) - \frac{1}{2}\log(r) + \frac{1}{3}\log(s)$$

- 7. Find the exact value of the following logs.
 - **a.** $log_{1.5}(2.25)$

b. $10e^{\ln(0.1)}$

c. $log_{37}(1)$

- **d.** $3 \ln \sqrt[3]{e} + 9 \ln(1)$
- **8.** Use the properties of logarithms simplify the following if $log_x(2) = 2.1$, $log_x(3) = 4.6$, and $log_x(5) = 6.9$.
 - **a.** $log_{x}(10)$

b. $\log_x \sqrt{30}$

9. Solve for x.

a.
$$3e^x = 12$$

b.
$$\log_3(x) = 2.5$$

c.
$$\log(x-8) = 2$$

d.
$$4^{2x+6} = 1024$$

e.
$$4log_2(3x+2) = 20$$

f.
$$5^{(2x-1)} - 8 = 117$$

g.
$$ln(3x-2)^2+6=14$$

h.
$$log(6x) - log(x-2) = 1$$

10.	How long will it take an investment to double if it is compounded monthly at 8.5%?
11.	How many years would it take to produce \$1,000,000 from an investment of \$250,000 if the interest rate is 12%, compounded quarterly?
12.	What would the interest rate need to be, to produce \$100,000 from an initial investment of \$20,000 compounded continuously for 15 years?
13.	How much would you need to invest, if you needed \$400,000 in 10 years and you were earning 7.5%, compounded yearly?
14.	Scappoosium 123 (123Sc) has a half-life of 2112 years. a. Find its rate of decay (k)
	If you started with 20g of ¹²³ Sc, how much would you have after: b. 1000 years c. 5000 years
	If I have 25g now, how much did I have: d. 500 years ago e. 1000 years ago
	f. If I have a sample that weighs 50g, how long until it weighs 15g?