Practice 5.2: Logarithmic Functions

- 1. Given the following functions and their graphs, find and sketch the graph of the inverse functions.
 - **a.** $y = 5^x$

b. y = ln(x)

- 2. Use the definition of a logarithm to rewrite the exponential equations as logarithmic equations.
 - **a.** $5^3 = 125$

b. $81^{1/4} = 3$

c. $6^{-2} = \frac{1}{36}$

d. $2^6 = 64$

e. $e^0 = 1$

f. $e^3 = 20.086$

- 3. Evaluate the expressions without a calculator
 - **a.** $log_2(16)$

b. $log_3(81)$

c. $log_{25}(5)$

d. $log_4\left(\frac{1}{16}\right)$

e. $log_a(a^3)$

- **f.** $log_a\left(\frac{1}{a}\right)$
- 4. Use a calculator to evaluate the expressions. Include three decimal places.
 - **a.** $log_{10}(425)$

b. $log_{10}(0.205)$

c. $log_{10}(\frac{3}{4})$

d. *ln*(100)

e. *ln*(0.01)

f. $ln\left(\frac{1}{e}\right)$

g. log(425)

h. $ln(\sqrt{5}-2)$

i. $log(10^5)$

5. Use the graph of y = ln(x)to match the functions with their graphs.

1. f(x) = ln(x) + 2

2. f(x) = -ln(x)

4. f(x) = ln(x-1)

5. f(x) = ln(1 - x)

3. f(x) = -ln(x + 2)

(f)

6. f(x) = -ln(-x)

6. Sketch and label the following graphs on the axes below.

$$\mathbf{a)} \ f(x) = log_2(\mathbf{x})$$

b)
$$f(x) = log_2(-x)$$

c)
$$f(x) = log_2(x) + 1$$

d).
$$f(x) = -log_2(x-1)$$

- 7. Use the table of points below to decide which of the following statements are true:
 - a) y is an exponential function of x.

- **b)** y is an logarithmic function of x.
- c) x is an exponential function of y.
- d) y is a linear function of x.