\qquad
Show any relevant work. For each problem, circle your final answer

1. (20 points) Verify each of the following Identities
a. $\csc ^{2} x-\cot ^{2} x=1$
b. $\sin \left(\frac{\pi}{2}-x\right)+\sin \left(\frac{\pi}{2}+x\right)=2 \cos x \quad$ (Use the sum and difference formulas)
2. (20 points) Use the sum and difference formulas to evaluate each of the following expressions.
a. $\sin \frac{5 \pi}{12}$
b. $\cos \frac{3 \pi}{8} \cos \frac{3 \pi}{24}+\sin \frac{3 \pi}{8} \sin \frac{3 \pi}{24}$
3. (16 points) Use double-angle or half-angle formulas to evaluate the following expressions.
a. $\sin 2 x$, if $\tan x=-\frac{5}{12}$ and x is a quadrant II angle .
b. $\cos 22.5^{\circ}$
4. (16 points) Find all the solutions to each equation.
a. $\sin ^{2} x+2 \sin x-3=0$
b. $4 \cos ^{2} x-3=0, \quad 0 \leq x<2 \pi$
5. (12 points) Let $\mathbf{u}=\langle 3,-5\rangle, \mathbf{v}=\langle 1,4\rangle$ and $\mathbf{w}=\langle 2,6\rangle$. Find each of the following.
a. $3 \mathbf{u}-4 \mathbf{v}$
b. $|\mathbf{w}|$
c. $\left|\frac{1}{|\mathbf{w}|} \mathbf{u}\right|$
6. (8 points) Find the horizontal and vertical components of the vector \mathbf{z} with the given length and direction, and rewrite \mathbf{z} in terms of the vectors \boldsymbol{i} and $\boldsymbol{j}: \quad|\mathbf{z}|=10, \theta=30^{\circ}$
7. (8 points) Find the length $(|\boldsymbol{t}|)$ and direction (θ) of vector \mathbf{t} with the component form: $\mathbf{t}=\langle-4,4\rangle$.
