5.1 Operations with Polynomials

Simplifying $=$ rewriting expressions wont parentheses or negative expeneats
Monomials $=1$ term allthings connected $-23 a^{2} b^{3} c^{4} d^{7}$ with mult/Div

Caveats polynomial $\left\{\begin{array}{c}x+1 \quad \text { binomial } \\ x^{2}+12 x+20 \\ \text { more }\end{array}\right.$ exceptions non \oplus integer exponents on variable no radicals $\sqrt{x}=x^{\frac{1}{2}}$
ho variables in a denominator $\frac{1}{x}=x^{-1}$

Degree of a polynomial: is the degree of its term \imath^{2} exponent on a variable

$$
\begin{array}{cc}
\begin{array}{cc}
x^{2}+3 x-17 & 2^{0} \\
2^{0} & 3 x^{4}+2 x^{9}-7 x^{5}+2 \\
1^{0} & 4^{0} \\
\text { const. } & 9^{0}
\end{array} \\
\text { Determine which of the } 0^{0} \\
2 x^{3} y^{4} \quad 3+4=7^{0}
\end{array}
$$ following is a polynomial and find its degree.

a) $2 i^{i} x-5 y^{i}$
b) $\frac{1}{3} x^{2}-17$
(2) 10
(i) 2°
c) $x^{2}+2 x-x^{\frac{1}{2}}$
d) $\frac{3 x^{2}+2}{2 y^{3}-3}$
e) $\sqrt{4} x^{3}$
f) $\frac{x^{3}}{y}$

Power Rules

- product

$$
\begin{aligned}
& x^{a} \cdot x^{b}=x^{a+b} \quad 2^{3} \cdot 2^{4}=2^{3+4}=2^{7} \\
& 2 \cdot 2 \cdot 2 \times 2 \cdot 2 \cdot 2 \cdot 2=
\end{aligned}
$$

- quotient $\frac{x^{a}}{x^{b}}=x^{a-b} \quad \frac{2^{5}}{2^{2}}=2^{5-2}=2^{3}$
- negative exponents $\quad \frac{8 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2}=2^{3}$

$$
x^{-1}=\frac{1}{x} \quad \frac{1}{x^{-2}}=x^{2} \quad 2^{-3}=\frac{1}{2^{3}} \quad \frac{1}{3^{-2}}=3^{2}
$$

- power to a power $\left(x^{2}\right)^{3}=x^{2 \cdot 3}=x^{6}$

$$
\begin{aligned}
& \left(2 x^{3}\right)^{4}=2^{4} x^{3.4}=2^{4} x^{12}=16 x^{12} \\
& \left(\frac{x^{3}}{y^{4}}\right)^{2}=\frac{x^{3 \cdot 2}}{y^{4 \cdot 2}}=\frac{x^{6}}{y^{8}} \\
& \left(\frac{a^{2}}{b^{5}}\right)^{-3}=\left(\frac{b^{5}}{a^{2}}\right)^{3}=\frac{b^{5 \cdot 3}}{a^{2 \cdot 3}}=\frac{b^{15}}{a^{6}}
\end{aligned}
$$

$$
\begin{gathered}
\left(3 x^{4} y^{7}\right)\left(-2 x^{1} y^{-4}\right) \\
(3 \cdot-2)\left(x^{4} \cdot x^{1}\right)\left(y^{7} \cdot y^{-4}\right) \frac{y^{7}}{y^{4}}=y^{7-4}= \\
-6 x^{5} y^{3} \\
\frac{15 x^{6} y^{8}}{3 x^{7} y^{5}}=\left(\frac{15}{3}\right)\left(\frac{x^{6}}{x^{7}}\right)\left(\frac{y^{8}}{y^{5}}\right) \\
5 x^{-1} y^{3}=\frac{5 y^{3}}{x^{1}} \\
\left(3 m^{5} n^{-3}\right)^{2}(3)^{2}\left(m^{5}\right)^{2}\left(n^{-3}\right)^{2} \\
9 m^{10} n^{-6} \frac{9 m^{10}}{n^{6}} \\
\left(\frac{3 x^{4} \cdot 2 x^{5}}{4 y^{3}}\right)^{2}=\left(\frac{6 x^{9}}{4 y^{3}}\right)^{2}=\frac{\left(6 x^{9}\right)^{2}}{\left(4 y^{3}\right)^{2}}=\frac{36 x^{18}}{16 y^{6}} \\
\text { or }\left(\frac{3 x^{9}}{2 y^{3}}\right)^{2}=\frac{9 x^{18}}{4 y^{6}} \leftarrow
\end{gathered}
$$

Zevo Powers

$$
\begin{array}{ll}
3 \wedge 0=3^{0}=1 & 138 \wedge 0 \quad 138^{\circ}=1 \\
3 y^{x} 0=1 & x^{0}=1 \\
3 x^{y} 0=1 & (m n p)^{0}=1 \\
0^{0}=\text { und } & -3^{0}=(-1) \cdot 3^{0}=(-1) \cdot 1=-1 \\
(-3)^{0}=1 \\
\left(\frac{\left(-73 x^{14} y^{17} z^{43}\right)^{18}}{\left(47 x^{-3} y^{74} z^{-23}\right)}\right)^{0}=1
\end{array}
$$

