Math 112: #31 A/B/C/D

A) (No Calculator) Consider the parametric equations

$$x(t) = 4\sin t$$
, $y(t) = 4\cos t$, $0 \le t \le 2\pi$

1. Graph the curve in the xy-plane defined by these equations. Indicate on the graph three things: the initial point, the point corresponding to $t = \frac{\pi}{2}$, and the direction in which the curve is traversed as t goes from 0 to 2π .

$$x^{2} + y^{2} = (4 \sin t)^{2} + (4 \cos t)^{2}$$

= $16 \sin^{2} t + 16 \cos^{2} t$
= $16 (\sin^{2} t + \cos^{2} t)$
 $x^{2} + y^{2} = 16 \text{ circle } \omega/ r = 4$

(No Calculator) Consider the parametric equations

$$x(t) = 3\sin t$$
, $y(t) = 2\cos t$, $0 \le t \le 2\pi$

1. Graph the curve in the xy-plane defined by these equations. Indicate on the graph three things: the initial point, the point corresponding to $t = \frac{\pi}{2}$, and the direction in which the curve is traversed as t goes from 0 to 2π .

$$x = 3\sin t$$
 $y = 2\cos t$
 $\frac{x}{3} = \sin^2 t$ $\frac{y}{2} = \cos^2 t$
 $\sin^2 t + \cos^2 t = 1$
 $(\frac{x}{3})^2 + (\frac{y}{2})^2 = 1$ ok
 $36(\frac{x^2}{9} + \frac{y^2}{4}) = 1$ either
 $4x^2 + 9y^2 = 36$ ok

C) (No Calculator) Consider the parametric equations

$$x(t) = -5\sin 2t$$
, $y(t) = 3\cos 2t$, $0 \le t \le \pi$

1. Graph the curve in the xy-plane defined by these equations. Indicate on the graph three things: the initial point, the point corresponding to $t = \frac{\pi}{4}$, and the direction in which the curve is traversed as t goes from 0 to π .

t	LX.	19
O	10	
N/4	-5	0
11/2		3
311	5	3
T	0	3

$$x = -5\sin 2t$$
 $y = 3\cos 2t$ let $\theta = 2t$

$$\frac{x}{-5} = \sin \theta$$
 $\frac{y}{3} = \cos \theta$

$$(\frac{x}{-5})^2 = \sin^2 \theta$$
 $(\frac{y}{3})^2 = \cos^2 \theta$

$$\frac{\sin^2 \theta + \cos^2 \theta = 1}{(\frac{x}{-5})^2 + (\frac{y}{3})^2 = 1} \text{ ok}$$

$$225(\frac{x^2}{25} + \frac{y^2}{9}) = 1 \cdot 225 \text{ either}$$

$$9x^2 + 25y^2 = 225 \text{ ok}$$

D) (No Calculator) Consider the parametric equations

$$x(t) = 4\sin 2\pi t$$
, $y(t) = -3\cos 2\pi t$, $0 \le t \le 1$

1. Graph the curve in the xy-plane defined by these equations. Indicate on the graph three things: the initial point, the point corresponding to $t = \frac{1}{4}$, and the direction in which the curve is traversed as t goes from 0 to 1.

$$x = 4\sin\theta$$
 $y = -3\cos\theta$
 $\frac{x}{4} = \sin\theta$ $\frac{y}{-3} = \cos\theta$
 $(\frac{x}{4})^2 = \sin^2\theta$ $(\frac{y}{-3})^2 = \cos^2\theta$
 $(\frac{x}{4})^2 + (\frac{y}{-3})^2 = \sin^2\theta + \cos^2\theta = 1$
 $(\frac{x}{4})^2 + (\frac{y}{-3})^2 = 1$ $(\frac{x}{4})^2 + (\frac{y}{4})^2 + (\frac{y}{-3})^2 = 1$ $(\frac{x}{4})^2 + (\frac{y}{-3})^2 = 1$ $(\frac{x}{4})^2 + (\frac{y}{-3})^2 = 1$ $(\frac{x}{4})^2 + (\frac{y}{-3})^2 = 1$ $(\frac{$