Math 112: #16 I/II

I) Light passing through the boundary from a substance with index of refraction n_1 to a substance with index of refraction n_2 experiences a direction change governed by Snell's law, which states that

 $n_1 \sin \theta_1 = n_1 \sin \theta_2$ where θ_1 and θ_2 are always positive θ_1 θ_2 θ_2

a) Water has an $n_1 = 1.33$ and glass has $n_2 = 1.52$. Estimate θ_2 to two decimal places given that a ray of light enters the glass with $\theta_1 = 40^\circ$.

1.339. $1.46^{\circ} = 1.529.$ 1.52 0.562 = 51002 $510^{\circ}(0.562) = 62 = 3422^{\circ}$

b) Now reverse the situation and consider light exiting the glass. At what angle θ_2 , will $\theta_1 = 90^{\circ}$?

1.33 5 in 40° = 1.52 5 in 02 1.33 5 in 40° = Sin GZ

5 m (1.33) = 62 = 61.04°

II) For a wave to be surfable, it can't break all at once. A wave has a surfable shoulder if it hits the shoreline at an angle θ given by

$$\theta_1 = \sin^{-1} \left(\frac{1}{(2n+1)\tan \theta_2} \right)$$

where θ_2 is the angle at which the beach slopes down and where n=1, 2, 3, •••

a) For $\theta_2 = 10^{\circ}$, find θ_1 when n = 3

b) For $\theta_2 = 15^\circ$, find θ_1 when n = 2, 3, and 4. Explain why the formula does not give a value for θ_1 when n = 0 or 1.

$$n=2$$
 $G_1 = \sin^2\left(\frac{1}{5}\tan 5^{\circ}\right) = \sin^2\left(\frac{1}{1.840}\right) = 42.28^{\circ}$
 $n=3$ $G_1 = \sin^2\left(\frac{1}{4}\tan 5^{\circ}\right) = \sin^2\left(\frac{1}{1.840}\right) = 32.21^{\circ}$
 $n=4$ $G_1 = \sin^2\left(\frac{1}{4}\tan 5^{\circ}\right) = \sin^2\left(\frac{1}{2.412}\right) = 24.50^{\circ}$
 $n=0$ $G_1 = \sin^2\left(\frac{1}{4}\tan 5^{\circ}\right) = \sin^2\left(\frac{1}{2.412}\right) = 3\ln^2\left(\frac{1}{2.412}\right) = 24.50^{\circ}$
 $n=1$ $G_1 = \sin^2\left(\frac{1}{3}\tan 5^{\circ}\right) = \sin^2\left(\frac{1}{2.412}\right) = 3\ln^2\left(\frac{1}{2.412}\right) = 3\ln^2\left(\frac{1}{2.$