Math 112: #15 A/B/C/D

A) Find the domain and range of $f(x) = 3\sin^{-1}(4x-1) + 2$.

Answers need to be given in set notation: ex: $\{x \in \Re \mid -9 \le x \le 11\}$ or (-9, 11]

B) Find the domain and range of $f(x) = 5\cos^{-1}(2x+3) - 4$.

EXER 2 5 x 5-13

Range:
$$(0)$$
 (0)

C) Find the domain and range of $f(x) = 2\tan^{-1}(3x+1) - 5$.

Demain
$$tan'x \Rightarrow [-\infty, \alpha] = -\infty \le x \le \infty$$

find $-\infty \le 3x + 1 \le \infty$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 + 1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty \\ 3 \end{bmatrix} = -1 = 0$$

$$\begin{bmatrix} -1 - \infty$$

D) Find the domain and range of $f(x) = 4\cos^{-1}(3x-2) + 6$.

Domain:
$$\cos^{1}x \Rightarrow [-1, 1] = -1 \le x \le 1$$

 $-1 \le 3x - 2 \le 1$
 $(x \in \mathbb{R} | 1/3 \le x \le 1)$
 $(x \in \mathbb{R} | 1/3 \le x \le 1)$

Range:
$$(05)$$
 => $[0,T]$ $0 \le y \le T$
 $[6,417+6]$ $4(0)+6 \le y \le 4(T)+6$ or $\{y \in R | 6 \le y \le 4T+6\}$